

Use of 3D Modeling in 3D Animation Films; Techniques, Application, Challenges and Future Directions

Abhishek Bhattacharjee

Assistant Professor,

Amity School of Fine Arts, Amity University, Kolkata

Abstract

Rapid development in computer graphics has completely altered the animation film production scenario, with 3D modeling being an integral part of it. Right from experimental computer graphics animation films to full-feature animation films, 3D modeling has had an impact on animation films regarding visual authenticity, realism, and efficiency of production. It has been seen that 3D animation films rely heavily on 3D modeling for character or environment creation and authenticity in films. However, it has not been covered comprehensively anywhere that 3D animation films can be completely understood not only by its theoretical aspects but also by its history, inclusion in production pipeline, authenticity, challenges, and future potential of 3D modeling in animation films. In this research paper, an effort has been put forward for understanding the importance of 3D modeling in 3D animation films in terms of theoretical aspects, history, and inclusion in production pipeline, authenticity, challenges, and future potential of 3D modeling in animation films. At last, real-time rendering, AI, procedural modeling, etc., will be discussed for its future potential in animation films.

Keywords: 3D modeling, 3D animation, computer graphics, CGI films, animation Pipeline

Introduction

Over a long period of time animation has served as strong medium for artistic expression and storytelling and technological experimentation. Animation has experienced a revolutionary shift with the introduction of computer-generated imagery rather than traditionally dominated 2D hand drawn techniques. Nowadays most of the films released worldwide are supported by more use of computing power, software-based sophistication and digital artistry. 3D modelling is a process of constructing three dimensional representations of characters, environments and objects. 3D modelling is not just a technical step in an entire production pipeline rather it includes several steps such as lighting, texturing and rendering also in order to get a complete output. Models used in 3D animation films define its form, proportion and spatial presence. These models help film makers to dub real world physics, material properties, textures and lighting behaviour. The contribution of 3D models is not only limited to visual aesthetics but also affects the entire production efficiency, creative control and the economic feasibility in case of large scaled projects. The reusability of digital 3D assets has also redefined the operational method of animation studios. Further to mention modelling techniques can also

Published: 16 January 2026

DOI: <https://doi.org/10.70558/IJSSR.2026.v3.i1.30781>

Copyright © 2026 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

influence the perception of audience, narrative immersion and emotional attachment. The objective of this research paper is to provide a comprehensive examination of the use of 3D modeling in 3D animation films. This paper further delves into the study of historical development, role of 3d modelling within the animation pipeline, its benefits and limitations and also the emerging trends which will shape the future of the industry. This paper also examines the contribution of 3D modeling both as technical tools and an artistic medium in contemporary animation cinema.

Conceptual and Theoretical Foundations of 3D Modeling

3D modeling refers to the creation of a mathematical and geometric description of a 3D object using specific software. This description is formed by points called vertices and edges that join them and form polygons, which make up a mesh representing the object's surface. This model is embedded in a virtual coordinate system where it is possible to work with the x, y, and z axes. As Foley et al. (2014) described, 3D modeling is the central representation of graphical objects in computer graphics, enabling visualization, simulation, and animation. Models in animated films are used to represent figures, items, scenery, vehicles, but also more intangible things, such as clouds and magic.

Types of 3D Modeling

3D modeling is a fundamental process which serves as a prerequisite for animation, and the methods employed in 3D modeling vary depending on the task at hand in the given project. Each of the modeling techniques in use has its own merits and can be employed for a given objective in the field of animation or gaming.

Polygonal Modeling is one of the most commonly used approaches and also one with a high level of acceptance in three-dimensional modeling. In this modeling method, models are created with the help of polygon meshes, including vertices, edges, and faces. In this particular method, artists make use of such elements to create modeled versions of complex objects or shapes. Another area where polygonal modeling has gained widespread acceptance is in modeling characters, and this occurred due to the ability to create models with a geometrical perspective, hence making them suitable for procedures related to animation and deformation. Moreover, in addition to this, polygon models appear to be quite ideal in environment models and other architectural models with a level of fairness. Nearly all real-time applications related to gaming utilize polygon models due to compatibility with animation and rendering engines.

NURBS Modeling, or Non-Uniform Rational B-Splines, are mathematically computed. NURBS Modeling does not use polygons at all. Instead, it models shapes and curves based on other shapes and curves. NURBS Modeling is used in product design, automobile design, and other engineering designs. Although character animation does not use NURBS Modeling-as this is tough to deform-it could be used to make smooth surfaces in animations, like vehicles and other hard-surface objects, since smoothness and accuracy are much more desired in such animations.

Digital sculpting is a modeling technique that resembles sculpting with clay in a digital environment using special software for sculpting models by "pushing", "pulling", and

"carving" the surface of models to include detailed information during sculpting. This type of digital sculpting allows artists to create highly realistic and detailed models; it also applies to characters, as well as other types of models such as animals and organic models. It finds broad applications in films and games where realistic models are specifically needed.

Procedural Modeling is a method of modeling the usage of algorithms, rules, and parameters instead of modeling by hand. It's particularly useful for the generation of large environments like cities, forests, landscapes, and buildings. Procedural modeling assists the artist in changing something quickly by changing a few parameters; therefore, procedural modeling is really effective in the generation of variations and handling of large scenes. This method of modeling has been greatly used in the animation industry and the game industry due to the enormous time savings and consistency that can be achieved in large environments like cities and landscapes.

All these methods can be found together in the very same production pipeline, showcasing the versatility that 3D modeling provides in the field of animation.

Historical Evolution of 3D Modeling in Animation Films

The history of 3D modeling within animation traces its roots to academic and research settings in the 1960s and 1970s. Among the first pioneering efforts in 3D modeling was "A Computer Animated Hand" (1972) by Edwin Catmull and Fred Parke. The pioneering effort in computer animation was to model and animate a human hand using polygon geometry. In this era, computing power was limited, which led to simplicity in 3D models. However, it was during the 1980s and early 1990s that the application of CGI started surfacing more and more in live-action films, albeit as a technology used in visual effects. The major releases of this time, thereby emphasizing the possibilities of applying 3D computer graphic technology to construct authentic virtual characters, were Tron in 1982 and Jurassic Park in 1993. The landmark event in terms of the production of totally 3D animated films, therefore, was Pixar's Toy Story in 1995. Since the early 2000s, there has been a development in the sophistication of 3D animation movies. This has been achieved through the help of the film industry companies Pixar, DreamWorks, Disney Animation Studios, and Illumination. This sophistication has been enhanced through technological advancements in the rigging of characters, the creation of facial expressions, and the establishment of large game environments.

Tracing the role of 3D Modeling in the 3D Animation Production Pipeline

It is the central part of the animation pipeline because all other processes have a connection, of one form or another, to the work that takes place here. At the preproduction process, the concept artists and designers produce concepts through drawing. Storyboard concepts developed at the pre-production stage of animation development are developed into temporary 3D models that may be called "block-outs" or "proxy models."

a) Character Modeling

Character modeling is regarded as one of the most prominent applications of 3D modeling in animation films. A character needs to be aesthetically pleasing, detailed, and properly modeled for animation. Modeling artists pay attention to the anatomy and topology of characters for

smooth animation. Proper character modeling also enables narrative storytelling, which refers to the ability to generate subtle expressions on the face and body of the character. Poor character modeling can limit animation expression and immersion in films.

b) Environment and Prop Modeling

Environments determine the context and overall atmosphere tagged to animated films. These include 3D models that determine the real-world environments in which the characters exist. Environment modeling is used in the production process in a way that larger environments are generated using procedural modeling, while environments related to the hero are detailed in a minute way.

c) Integration with Rigging and Animation

After modeling, the assets proceed to the rigging stage where it receives its digital skeleton or rig. Rigging can be very challenging depending on the model's topology. There are various models in use in the industry; a few offer a more realistic result than others, which is dependent on the application needed.

Technical and artistic Advantages of 3D Modeling

3D modeling has the ability to provide either realistic or highly stylized visual styles. Realistic movies utilize the real geometry that can be achieved, as well as real material simulation, whereas stylized movies incorporate more extreme geometry and reduced detail for the sake of artistic intent. Some of the main benefits that come with 3D modeling include the ability to have reusable assets. It means that the model can be reused, altered, or applied for different scenes or even for different productions. Because the models used in 3D animation are in the virtual world, the director has complete control over the positioning of the camera, lighting, and composition. This makes it easier for the director to create complex shots that would be difficult to accomplish in a two-dimensional form of animation.

Challenges and Limitations of 3D Modeling in Animation Films

3D modeling requires expertise and complex learning. First, it is time-consuming. Moreover, it requires complex knowledge, not only in terms of anatomy, geometry, but also software applications. The more detailed, the more time it takes computationally to render. The more detailed, and if the shaders and lighting simulations are realistic, it might just take longer to render. While flexible, 3D modeling can also be limited. The more realistic, the more the challenge of the “uncanny valley.” These models and monsters will be so human-like, however, as to be uncomfortable. The pursuit of perfection between the real thing and models would just go on.

Case Studies in 3D Animation Films

One of the key leaders, in applying such advanced techniques of 3D modeling in storytelling, has been Pixar. Films such as ‘Finding Nemo’ and ‘Coco’ have been successful examples in modeling the environment and characters to offer a more emotional experience. In the Disney movie Frozen, realistic models for snow, ice, and cloth were simulated through the use of complex 3D models and simulations. This was crucial to the movie's overall effect.

Emerging Trends and Future Directions

The real-time rendering engines are finding more applications in the animation field, which enables the director to have a real-time view of the scene. The real-time rendering engine has increased the possibilities of creativity while reducing the number of iterations. AI-assisted software tools are being increasingly employed to automate the model making process, which includes retopology and texturing. This technology has the potential to make the time-consuming task less so while providing the artist with enough time to make decisions. Based on procedural programming, procedural modeling assists individuals in generating complex worlds.

Conclusion

The use of 3D modeling in 3D animation films transformed from an entirely technical endeavor to a fundamental component of animation films. As discussed throughout the research project, 3D modeling is a function that is neither entirely an aspect of animation films but a synthesis of artistic creativity and technological advancements. Even with the simple experiments in computer animation to the complex 3D animation films of the current age, 3D modeling continues to revolutionize the way animated films are conceptualized and articulated. If placed within the historical dimension, the development in 3D modeling illustrates the power of accelerated computing capabilities and advancements in animation software in animating the boundaries of animation films. Even with the simplicity in the number of polygons and the capabilities of rendering technology in the early 3D animation films, the models had simplicity in them. However, projects such as *A Computer Animated Hand* and the subsequent release in animated films such as *Toy Story* ushered in a new age in animation films since then. Since then, animation film makers have progressed with advancements in 3D modeling in creating characters with emotional expressions in a replicable way. Being a part of the animation movie making industry, 3D modeling acts as an integral linking activity, affecting almost all other animation movie making activities, right from rigging and animation making to lighting and rendering. Good model creation goes a long way in achieving deformation and natural animation and interaction in the generated environment. Being part of the aspect of character model creation, it plays significantly in capturing the audience since facial expressions, poses, and even proportions have a direct effect on the generated animation output. Being part of world creation, environment and object model creation acts as an equal factor in adding reality and purpose of animation movie making activity. From an aesthetic and technological point of view, 3D modeling stands greatly benefited since it can uniquely classify itself in the animation movie making industry. Having the capability of achieving both hyper-realistic and other versions of artistic visualizers goes a long way in aligning with movie making. Digital reusability acts as an efficient factor in improving movie making feasibility. In addition, the control of cameras, lights, and compositions in minute detail will enable the directors to incorporate complex camera action in the story. This would not have been easy in 2D and live action. Although 3D modeling has many advantages, some challenges are linked to it as well. This is no less than an expertise task in relation to anatomy and geometry. This would not only be time-consuming but also demanding in nature. In most cases, when it comes to achieving realism, it would increase processing time. In the end, it would encounter “uncanny Valley” in

its process. Turning to the future of animation and animation production, innovative tools such as real-time rendering engines, artificial intelligence-assisted models, and/or procedural models will soon revolutionize and further evolve this animation industry in new and exciting ways. Real-time visualization solutions enable and further enhance the optimization of certain decisions in animation, and artificial intelligence allows creative minds to focus on what they do best, such as create and conceptualize, and eliminate and thereby eliminate mundane computer work tasks having absolutely no relevance and importance to animation in 3D computer animation, as well as other similar animation solutions in the computer animation industry. Thus, 3D computer animation has now made 3D computer animation or 3D computer graphics animation an integral part, in its own right, of animation film production in a manner that was, in animation film production, unforeseen.

References

1. Catmull, E., & Wallace, A. (2014). *Creativity, Inc.: Overcoming the unseen forces that stand in the way of true inspiration*. Random House.
2. Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. (2014). *Computer graphics: Principles and practice* (3rd ed.). Addison-Wesley.
3. Kerlow, I. V. (2009). *The art of 3D computer animation and effects* (4th ed.). Wiley.
4. Lasseter, J. (1987). Principles of traditional animation applied to 3D computer animation. *ACM SIGGRAPH Computer Graphics*, 21(4), 35–44. <https://doi.org/10.1145/37402.37407>
5. Parent, R. (2012). *Computer animation: Algorithms and techniques* (3rd ed.). Morgan Kaufmann.
6. Thomas, F., & Johnston, O. (1995). *The illusion of life: Disney animation*. Disney Editions.
7. Wells, P. (2013). *Understanding animation*. Routledge.